Принципы построения ос. Основные принципы построения ос Основные принципы построения операционных систем кратко

Классификация операционных систем

Существует несколько схем классификации операционных систем. Ниже приведена классификация по некоторым признакам с точки зрения пользователя (табл. 1).

Таблица 1. Классификация ОС

Многозадачная ОС, решая проблемы распределения ресурсов и конкуренции, полностью реализует мультипрограммный режим в соответствии с определенными требованиями.

Приблизительность классификации по числу одновременно выполняемых задач очевидна. Так, в ОС MS-DOS можно организовать запуск дочерней задачи и одновременное сосуществование в памяти двух и более задач. Однако эта ОС традиционно считается однозадачной, главным образом из-за отсутствия защитных механизмов и коммуникационных возможностей.

Что касается классификации по числу одновременно работающих пользователей, то следует отметить: наиболее существенно отличие заключается в наличии у многопользовательских систем механизмов защиты персональных данных каждого пользователя.

Многопроцессорные системы состоят из двух или более центральных процессоров, осуществляющих параллельное выполнение команд. Поддержка мультипроцессирования является важным свойством ОС и приводит к усложнению всех алгоритмов управления ресурсами. Многопроцессорная обработка реализована в таких ОС, как Linux, Solaris, Windows NT и в ряде других.

Многопроцессорные ОС разделяют на симметричные и асимметричные. В симметричных ОС на каждом процессоре функционирует одно и то же ядро и задача может быть выполнена на любом процессоре, то есть обработка полностью децентрализована. В асимметричных ОС процессоры неравноправны. Обычно существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор.

Рассмотрим подробнее классификацию ОС по режиму работы. Существует три категории ОС, которые характеризуются определенным типом взаимодействия между пользователем и его заданием: ОС пакетной обработки, в которых задание пользователя обрабатывается как последовательность пакетов, а возможность взаимодействия между пользователем и его заданием во время выполнения отсутствует; ОС разделения времени, которые обеспечивают одновременное обслуживание многих пользователей, позволяя каждому взаимодействовать со своими заданиями; ОС реального времени, которые обслуживают внешние процессы в темпе, соизмеримом с темпом их поступления (в настоящее время широкое распространение получили многорежимные ОС).



В разряд многозадачных ОС, наряду с пакетными системами и системами разделения времени, включаются также системы реального времени . Они используются для управления различными техническими объектами или технологическими процессами. Такие системы характеризуются предельно допустимым временем реакции на внешнее событие, в течение которого должна быть выполнена программа, управляющая объектом. Система должна обрабатывать поступающие данные быстрее, чем те могут поступать, причем от нескольких источников одновременно. Столь жесткие ограничения сказываются на архитектуре систем реального времени, например, в них может отсутствовать виртуальная память, поддержка которой дает непредсказуемые задержки в выполнении программ.

Приведенная классификация ОС не является исчерпывающей.

ОС различают по назначению, выполняемым функциям и формам реализации. ОС – сложные дискретные системы, но в основу их разработки положены девять принципов (табл. 1).

Таблица 1. Принципы построения операционных систем

№ п/п Принцип Сущность
1. Частотный Наиболее часто встречающиеся операции выполняются наиболее быстро.
2. Модульности ОС создают на основе объединения самостоятельных функциональных элементов системы.
3. Функциональной избирательности Наиболее значимые и часто используемые модули выделяют в ядро ОС.
4. Генерируемости Настройка системных программ исходя из конкретной конфигурации ЭВМ и круга решаемых задач.
5. По умолчанию ОС самостоятельно задает параметры работы вычислительной системы, если их не задает пользователь.
6. Перемещаемости Построение модулей, исполнение которых не зависит от расположения в ОЗУ.
7. Защиты Необходимо разрабатывать меры, защищающие программы и данные от искажения и влияния друг на друга, а также пользователей на ОС.
8. Независимости программ от внешних устройств
9. Наращиваемости и открытости Открытая ОС доступна для анализа специалистам, а наращиваемая – для модификации и совершенствования.

Данные принципы являются методологической основой построения ОС, но их можно с успехом применять и при разработке прикладного программного обеспечения.

1.8. Переносимость ОС

Для обеспечения мобильности (переносимости) ОС используются следующие правила: большая часть кода пишется на языках, трансляторы которых есть для всех платформ; минимизация машинно-зависимого кода; аппаратно-зависимый код должен быть изолирован в нескольких модулях.

Если код ОС может быть сравнительно легко перенесен с процессора одного типа на другой и с аппаратной платформы одного типа на другую, то такую ОС называют переносимой или мобильной. Мобильность – это не бинарное состояние, понятие степени. Вопрос не в том, может ли ОС быть перенесена, а в том, сколько усилий необходимо потратить. Для того чтобы обеспечить свойство мобильности ОС, разработчики должны следовать вышеперечисленным правилам.

Каждая ОС является сложной и уникальной программной системой. Однако в их основу положены общие принципы перечисленные ниже.

Принцип модульности. Предусматривает построение ОС из функционально законченных модулей. Выполнение модулей ОС не должно зависеть от их расположения в памяти. Перед размещением модуля в памяти производится его настройка под фактические адреса. Существенную роль при этом играют способы адресации процессора и алгоритм распределения памяти, реализованный в ОС.

Принцип функциональной избирательности . В ОС выделяются наиболее важные и часто используемые модули, которые являются основой системы. Эту часть называют ядром ОС. Модули ядра выполняют такие базовые функции ОС, как управление процессами, памятью, устройствами ввода-вывода, системой прерываний. Модули ядра постоянно находятся в оперативной памяти и называются резидентными. Остальные системные модули хранятся на жестком диске и называются транзитными .

Принцип генерируемости . Позволяет настроить ядро и остальные компоненты ОС исходя из конкретной конфигурации ЭВМ и круга решаемых задач. Процедура настройки называется инсталляцией.

Принцип функциональной избыточности . Обеспечивает возможность выполнения одной и той же операции различными способами и средствами, что определяет универсальность и гибкость ОС.

Принцип независимости программ от внешних устройств . Позволяет осуществлять обмен данными и управление внешними устройствами независимо от их характеристик. Это достигается за счет того, что связь программ с конкретными устройствами производится не на уровне трансляции программы, а в период ее исполнения. Например, программе, выполняющей обработку последовательного набора данных, безразлично, какой носитель будет использоваться для их хранения. Непосредственное управление обменом данных между системой и внешними устройствами выполняют специальные программы, называемые драйверами .

Принцип совместимости . ОС должна иметь средства для выполнения прикладных программ, написанных для других ОС. Следует различать совместимость на уровне двоичных кодов и на уровне исходных текстов. Понятие совместимости включает также поддержку пользовательских интерфейсов других ОС.

Принцип расширяемости (открытой и наращиваемой ОС ). Аппаратные средства компьютера устаревают за несколько лет, а ОС может использоваться десятилетиями (например, ОС UNIX ). Поэтому необходимо чтобы в ОС можно было легко внести изменения и дополнения, не нарушая ее целостности. Изменения ОС обычно заключаются в приобретении ею новых свойств, например поддержке новых типов внешних устройств или новых сетевых технологий. Расширяемость достигается за счет модульной структуры ОС. Взаимодействие модулей осуществляется только через функциональный интерфейс.

Принцип переносимости (мобильности) . Код ОС должен легко переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа на аппаратную платформу другого типа. Аппаратные платформы различаются не только типом процессора, но и архитектурой всего компьютера. переносимые ОС имеют несколько вариантов реализации для разных платформ, т. е. являются многоплатформенными.

Принцип надежности и отказоустойчивости . Система должна быть защищена как от внутренних, так и от внешних ошибок, сбоев и отказов. Ее действия должны быть всегда предсказуемыми, а приложения не должны иметь возможности наносить вред ОС. Важно, включает ли ОС программную поддержку аппаратных средств обеспечения отказоустойчивости, таких как дисковые массивы (RAID ) или источники бесперебойного питания.

Принцип максимальной производительности . ОС должна обладать настолько хорошим быстродействием и временем реакции, насколько это позволяет аппаратная платформа. На производительность ОС влияет архитектура ОС, многообразие функций, качество программирования кода, аппаратная платформа, на которой работает ОС.

Принцип обеспечения безопасности вычислений . Операционная система должна защищать данные и другие ресурсы ВС от несанкционированного доступа, обладать средствами защиты ресурсов одних пользователей от других пользователей.

Наиболее важными принципами, закладываемыми в основу построения операционных систем, являются следующие: принцип модульности, принцип виртуализации, принцип мобильности (переносимости), принцип совместимости, принцип открытости, принцип генерации операционной системы из программных компонентов. Необходимо отметить, что не все из перечисленных принципов реализованы в существующих операционных системах.

· Принцип модульности . Операционная система строится из множества программных модулей. Под модулем понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами. По своему определению модуль предполагает легкий способ его замены другим при необходимости. Принцип модульности отражает технологические и эксплуатационные свойства системы. Наибольший эффект его использования достижим в случае, когда принцип распространен одновременно на операционную систему, прикладные программы и аппаратуру. Принцип модульности является одним из основных в UNIX-системах.

· Принцип виртуализации . Любая операционная система, являясь средством распределения ресурсов и организуя по определенным правилам управление процессами, скрывает от пользователя и его приложений реальные аппаратные и иные ресурсы, заменяя их некоторой абстракцией. Операционная система существенно изменяет наши представления о компьютере. Она виртуализирует его, добавляя ему функциональности, удобства управления, предоставляя средства организации параллельных вычислений и т.д. Именно благодаря операционной системе мы воспринимаем компьютер совершенно иначе, чем без нее. Одним из аспектов принципа виртуализации является независимость программ от внешних устройств. Связь программы с этими устройствами производится не в процессе ее создания, а в период планирования исполнения. В результате перекомпиляция программы при работе с новым устройством не требуется.

· Принцип мобильности . Мобильность означает возможность легкого переноса операционной системы на другую аппаратную платформу. Мобильная операционная система обычно разрабатывается с помощью специального языка высокого уровня, предназначенного для создания системного программного обеспечения. Одним из таких языков является язык C, который был специально создан для того, чтобы написать на нем очередную версию операционной системы UNIX. В последние годы язык C++ также стал использоваться для этих целей, поскольку идеи объектно-ориентированного программирования оказались плодотворными не только для прикладного, но и для системного программирования.

· Принцип совместимости . Соблюдение этого принципа гарантирует способность операционной системы выполнять программы, написанные для других систем или для более ранних версий данной операционной системы, а также для другой аппаратной платформы.

· Принцип открытости . Этот принцип иногда трактуют как принцип расширяемости системы. Открытая операционная система доступна для анализа как пользователям, так и системным специалистам. Прекрасные возможности для расширения ОС предоставляет подход к структурированию операционной системы по типу клиент-сервер с использованием микроядерной технологии. В соответствии с этим подходом операционная система строится как совокупность привилегированной управляющей программы и набора непривилегированных служб – «серверов». Основная часть операционной системы может оставаться неизменной, в то время как добавляются новые службы или изменяются старые. К открытым ОС прежде всего следует отнести UNIX-системы и Linux.

· Принцип генерируемости. Согласно этому принципу исходное представление ядра системы должно обеспечивать возможность настройки, исходя из конкретной конфигурации вычислительного центра и круга решаемых задач. Под генерацией ОС понимается ее сборка из отдельных программных модулей. Процесс генерации осуществляется с помощью специальной программы-генератора. В наши дни при использовании персональных компьютеров с принципом генерируемости можно столкнуться разве что при работе с Linux. В этой системе имеется возможность не только использовать какое-либо готовое ядро, но и самому сгенерировать (скомпилировать) такое ядро, которое будет оптимальным для данного конкретного персонального компьютера и решаемых на нем задач. В остальных ОС конфигурирование системы под соответствующий состав оборудования осуществляется на этапе установки, причем в большинстве случаев не представляется возможным серьезно вмешаться в этот процесс.

Назначение и функции ОС.

В процессе работы ЭВМ выполняется множество различных действий: ввод программы, написанной на некотором исходном языке, запись введенной программы на некоторый накопитель, трансляция ее в объектное представление, редактирование оттранслированной программы, при котором происходит сборка программы, то есть устанавливаются все необходимые связи между отдельными подпрограммами. Полученный после редактирования загрузочный модуль либо исполняется, либо записывается на внешний носитель данных. В процессе выполнения программы может потребоваться ввод или вывод данных. Все вышеописанные действия образуют либо одну общую технологическую цепочку, либо несколько независимых (автономных) цепочек. В общем случае такие цепочки выполняются на машине одновременно.

Для организации выполнения всего набора задач в соответствии с требуемой для каждого из них технологией и выделением необходимых для этого ресурсов требуется соответствующая система управления (ОС).

ОС - это упорядоченная последовательность управляющих и служебных программ совместно с необходимыми информационными массивами, осуществляющая управление всеми ресурсами вычислительного комплекса для обеспечения работы вычислительной системы. Под эффективностью понимается мера соответствия вычислительной системы своему назначению. Основное назначение ОС - это управление ресурсами компьютера. ОС реализует различные функции, поэтому существуют различные классификационные схемы функций ОС. Рассмотрим одну из них рисунок 1. Разделить функции управления, контроля и планирования довольно сложно, так как они взаимосвязаны. Под этой группой функций понимается организация работы компьютера, а под функциями интерфейсом понимается организация работы пользователя.

Управление устройствами осуществляется специальными программами называемыми драйверами. Эти программы обычно включаются в комплект поставки ОС. Драйверы организованы специальным образом и пользователь не знает об этой организации, ему известно логическое имя и формат команд управления. Драйверы разрабатываются системными программистами на языке низкого уровня, а пользователю на этапе генерации ОС необходимо лишь указать перечень устройств. Существуют задачи, когда необходимо использование специализированной аппаратуры для которой разрабатываются специальные драйверы. Существует несколько подходов к организации управления такими устройствами:

· Включить в код программы коды управления устройством;

· Создание резидентных программ;

· Разработка полноценного драйвера.

Под управлением ФС организация данных на внешних носителях информации. Каждая ОС имеет собственную ФС обычно не совместимую с другими. Это связано с тем, что фирмы разработчики ОС ищут пути повышения эффективности использования внешней памяти. Управление программами подразумевает организацию работы исполняемых модулей В разных ОС эти функции одинаковы. Под управлением памятью понимается организация эффективного использования как внешней, так и оперативной памяти. В общем случае, состав функций ОС зависит от типа и назначения ОС.


Рисунок 1. Функции ОС

Требования, предъявляемые к ОС

Главным требованием, предъявляемым к операционной системе, является способность выполнения основных функций: эффективного управления ресурсами и обеспечения удобного интерфейса для пользователя и прикладных программ. Современная ОС должна реализовывать мультипрограммную обработку, виртуальную память, свопинг, поддерживать многооконный интерфейс и т. д. Кроме этих функциональных требований к операционным системам предъявляются не менее важные рыночные требования. К этим требованиям относятся:

Расширяемость

· Код должен быть написан таким образом, чтобы можно было легко внести дополнения и изменения, если это потребуется, и не нарушить целостность системы.

Аппаратная часть компьютера устаревает за несколько лет, полезная жизнь операционных систем может измеряться десятилетиями. Поэтому операционные системы всегда изменяются со временем и представляют собой приобретение ею новых свойств. Например, поддержка новых устройств, возможность связи с сетями нового типа, поддержка многообещающих технологий, использование более чем одного процессора. Сохранение целостности кода, какие бы изменения не вносились в операционную систему, является главной целью разработки.

Расширяемость может достигаться за счет модульной структуры ОС, при которой программы строятся из набора отдельных модулей, взаимодействующих только через функциональный интерфейс. Новые компоненты могут быть добавлены в операционную систему модульным путем, они выполняют свою работу, используя интерфейсы, поддерживаемые существующими компонентами.

Использование объектов для представления системных ресурсов также улучшает расширяемость системы. Объекты - это абстрактные типы данных, над которыми можно производить только те действия, которые предусмотрены специальным набором объектных функций. Объекты позволяют единообразно управлять системными ресурсами. Добавление новых объектов не разрушает существующие объекты и не требует изменений существующего кода.

Средства вызова удаленных процедур (RPC) также дают возможность расширить функциональные возможности ОС. Новые программные процедуры могут немедленно поступить в распоряжение прикладных программ.

Некоторые ОС для улучшения расширяемости поддерживают загружаемые драйверы, которые могут быть добавлены в систему во время ее работы. Новые файловые системы и устройства могут поддерживаться путем написания драйвера устройства и драйвера файловой системы и загрузки его в систему.

Переносимость

· Код должен легко переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы (которая включает наряду с типом процессора и способ организации всей аппаратуры компьютера) одного типа на аппаратную платформу другого типа.

Требование переносимости кода тесно связано с расширяемостью. Расширяемость позволяет улучшать операционную систему, в то время как переносимость дает возможность перемещать всю систему на машину, базирующуюся на другом процессоре или аппаратной платформе, делая при этом по возможности небольшие изменения в коде. Вопрос не в том, может ли быть система перенесена, а в том, насколько легко можно это сделать. Написание переносимой ОС аналогично написанию любого переносимого кода - нужно следовать некоторым правилам.

Во-первых, большая часть кода должна быть написана на языке, который имеется на всех машинах. Это означает, что код должен быть написан на языке высокого уровня, предпочтительно стандартизованном, например, на языке С. Программа, написанная на ассемблере, не является переносимой, если только вы не собираетесь переносить ее на машину, обладающую командной совместимостью с вашей.

Во-вторых, следует учесть, в какое физическое окружение программа должна быть перенесена. Различная аппаратура требует различных решений при создании ОС. Например, ОС, построенная на 32-битовых адресах, не может быть перенесена на машину с 16-битовыми адресами (разве что с огромными трудностями).

В-третьих, важно минимизировать те части кода, которые непосредственно взаимодействуют с аппаратными средствами.

В-четвертых, если аппаратно зависимый код не может быть полностью исключен, то он должен быть изолирован в нескольких хорошо локализуемых модулях. Аппаратно-зависимый код не должен быть распределен по всей системе. Например, можно спрятать аппаратно-зависимую структуру в программно-задаваемые данные абстрактного типа. Другие модули системы будут работать с этими данными, а не с аппаратурой, используя набор некоторых функций. Когда ОС переносится, то изменяются только эти данные и функции, которые ими манипулируют.

Для легкого переноса ОС при ее разработке должны быть соблюдены следующие требования:

· Переносимый язык высокого уровня . Большинство переносимых ОС написано на языке С. Непереносимый код должен быть тщательно изолирован внутри тех компонентов, где он используется.

· Изоляция процессора . Некоторые низкоуровневые части ОС должны иметь доступ к процессорно-зависимым структурам данных и регистрам. Однако код, который делает это, должен содержаться в небольших модулях, которые могут быть заменены аналогичными модулями для других процессоров.

· Изоляция платформы . Зависимость от платформы заключается в различиях между рабочими станциями разных производителей, построенными на одном и том же процессоре. Должен быть введен программный уровень, абстрагирующий аппаратуру (кэши, контроллеры прерываний ввода-вывода и т. п.) вместе со слоем низкоуровневых программ таким образом, чтобы высокоуровневый код не нуждался в изменении при переносе с одной платформы на другую.

Совместимость

· ОС должна иметь средства для выполнения прикладных программ, написанных для других операционных систем. Кроме того, пользовательский интерфейс должен быть совместим с существующими системами и стандартами.

Необходимо разделять вопросы двоичной совместимости и совместимости на уровне исходных текстов приложений. Двоичная совместимость достигается в том случае, когда можно взять исполняемую программу и запустить ее на выполнение на другой ОС. Для этого необходимы: совместимость на уровне команд процессора, совместимость на уровне системных вызовов и даже на уровне библиотечных вызовов, если они являются динамически связываемыми.

Совместимость на уровне исходных текстов требует наличия соответствующего компилятора в составе программного обеспечения, а также совместимости на уровне библиотек и системных вызовов. При этом необходима перекомпиляция имеющихся исходных текстов в новый выполняемый модуль.

Совместимость на уровне исходных текстов важна в основном для разработчиков приложений, в распоряжении которых эти исходные тексты всегда имеются. Но для конечных пользователей практическое значение имеет только двоичная совместимость.

Обладает ли новая ОС двоичной совместимостью или совместимостью исходных текстов с существующими системами, зависит от многих факторов. Самый главный из них - архитектура процессора, на котором работает новая ОС. Если процессор, на который переносится ОС, использует тот же набор команд и тот же диапазон адресов, тогда двоичная совместимость может быть достигнута достаточно просто.

Безопасность

· ОС должна обладать средствами защиты ресурсов одних пользователей от других.

Обеспечение защиты информации от несанкционированного доступа является обязательной функцией сетевых операционных систем. В большинстве популярных систем гарантируется степень безопасности данных, соответствующая уровню С2 в системе стандартов США.

Основы стандартов в области безопасности были заложены "Критериями оценки надежных компьютерных систем ". Этот документ, изданный в США в 1983 году (Оранжевая Книга).

В соответствии с требованиями Оранжевой книги безопасной считается такая система, которая "посредством специальных механизмов защиты контролирует доступ к информации таким образом, что только имеющие соответствующие полномочия лица или процессы, выполняющиеся от их имени, могут получить доступ на чтение, запись, создание или удаление информации".

Иерархия уровней безопасности, приведенная в Оранжевой Книге, помечает низший уровень безопасности как D, а высший - как А.

· В класс D попадают системы, оценка которых выявила их несоответствие требованиям всех других классов.

· Основными свойствами, характерными для С-систем, являются: наличие подсистемы учета событий, связанных с безопасностью, и избирательный контроль доступа. Уровень С делится на 2 подуровня: уровень С1, обеспечивающий защиту данных от ошибок пользователей, но не от действий злоумышленников, и более строгий уровень С2. На уровне С2 должны присутствовать средства секретного входа, обеспечивающие идентификацию пользователей путем ввода уникального имени и пароля перед тем, как им будет разрешен доступ к системе. Средства учета и наблюдения (auditing ) - обеспечивают возможность обнаружить и зафиксировать события, связанные с безопасностью, или любые попытки создать, получить доступ или удалить системные ресурсы. Защита памяти - заключается в том, что память инициализируется перед тем, как повторно используется. На этом уровне система не защищена от ошибок пользователя, но поведение его может быть проконтролировано по записям в журнале.

· Системы уровня В основаны на помеченных данных и распределении пользователей по категориям, то есть реализуют мандатный контроль доступа . Каждому пользователю присваивается рейтинг защиты, и он может получать доступ к данным только в соответствии с этим рейтингом. Этот уровень в отличие от уровня С защищает систему от ошибочного поведения пользователя.

· Уровень А является самым высоким уровнем безопасности, он требует в дополнение ко всем требованиям уровня В выполнения формального, математически обоснованного доказательства соответствия системы требованиям безопасности.

Надежность и отказоустойчивость

· Система должна быть защищена как от внутренних, так и от внешних ошибок, сбоев и отказов. Ее действия должны быть всегда предсказуемыми, а приложения не должны быть в состоянии наносить вред ОС.

Производительность.

· Система должна обладать настолько хорошим быстродействием и временем реакции, насколько это позволяет аппаратная платформа.

Режимы обслуживания.

В процессе развития вычислительной техники происходило и происходит постоянное совершенствование аппаратных средств вычислительных систем и эволюция ОС. Основной причиной такой эволюции является совершенствование способов (режимов) организации вычислительного процесса, при этом функционирование вычислительной системы может быть рассмотрено как обслуживание пользователя.


1.Режим индивидуального пользования.

Вычислительная система полностью предоставляется в распоряжение пользователя, по крайней мере, на время решения его задачи. Пользователь имеет непосредственный доступ к вычислительной системе, используя пульт управления или устройство ввода-вывода данных. После получения результатов или истечения отведенного для пользователя времени он должен зарегистрировать свой уход с машины, после чего его сменяет другой пользователь со своей программой. В каждый момент рабочего времени машина используется для решения только одной прикладной программы, отсюда и название. Режим индивидуального пользования удобен пользователю, но плохо использует оборудование вычислительной системы из-за простоев, вызванных чередованием фаз: первая фаза-работа вычислительной сети выдача результата, вторая- обдумывание пользователем результата и вод нового задания, при этом во второй фазе вычислительная система ничего не делает и процент ее использования чуть больше 50%.

2. Режим однопрограммной пакетной обработки.


Пользователь не имеет непосредственного доступа к вычислительной сети. Подготовленные заранее программы пользователь передает обслуживающему персоналу вычислительной системы. Собранные от нескольких пользователей программы накапливаются в пакет на магнитных дисках или лентах (пакет-это совокупность отдельных программ и данных, разделенных специальными метками на магнитном носителе). Затем, в соответствии с расписанием, оператор устанавливает носитель с пакетом на соответствующий накопитель, и специальная программа из состава ОС последовательно считывает программы и данные из пакета, после чего запускает их на выполнение. Результаты работы выводятся на другой накопитель, составляя очередь (пакет) выходных результатов. Управляющая программа должна фиксировать время, затраченное на выполнение каждой программы из пакета, а также реагировать на определенные ситуации по управлению пользовательскими программами. Ситуации могут быть как штатные (предусмотренные), например, останов программы в ожидании смены магнитной ленты, так и нештатные, к примеру, зацикливание некоторой программы из пакета. Таким образом, управляющая программа выполняет внутрисистемные операции управления, которые ранее (в режиме 1) выполнял пользователь. Дополнительно эта программа автоматически переключает машину на использование программ из пакета по вышеописанной схеме, при этом каждая программа, получившая доступ к процессору, обслуживается до конца. Рассматриваемая управляющая система автоматизирует операции оператора по организации работы ЭВМ при обработке на ней некоторой последовательности программ и может быть названа простейшей ОС.

Применение такого режима позволило улучшить эксплуатационных характеристики ЭВМ, прежде всего путем повышения процента использования оборудования. Однако этот режим обладает двумя существенными недостатками: значительное увеличение интервала времени между моментами передачи пользователями программ оператору на выполнение и получением результатов (чем больше пакет, тем больше интервал времени, а в среднем 2-4 часа); во время выполнения некоторой программы может потребоваться передача данных из оперативной памяти в накопитель и обратно, а процессор во время выполнения таких обменов простаивает и продолжит обработку только после завершения обмена, то есть наиболее дорогостоящее и высокоскоростное оборудование используется нерационально.

3. Режим мультипрограммной пакетной обработки.

Стремление устранить недостаток однопрограммного пакетного режима привело к дальнейшей эволюции ЭВМ и ОС, к мультипрограммным вычислительным системам. Основной функцией таких систем является размещение в оперативной памяти не одной, а нескольких пользовательских программ. Рассмотрим пример.

Пусть в оперативную память загружены три программы А,Б и В. Временные диаграммы их выполнения в однопрограммном и мультипрограммном режимах представлены ниже.


Однопрограммный режим
Многопрограммный режим

На диаграммах интервалы времени, необходимые для ввода-вывода обозначены t BB (А), t BB (Б) и t BB (В). Время выполнения всех трех программ (А, Б и В) в пакетном однопрограммном режиме равно Т(А)+Т(Б)+Т(В), то есть программы выполняются последовательно друг за другом. Рассмотрим выполнение программ в многопрограммном режиме.

Допустим, что процессор начинает обслуживание с программы А в момент t 0 .В момент t 1 программе А требуются данные, находящиеся на одном из внешних устройств. В этот момент выполнение программы А приостанавливается и начинает выполняться операция ввода-вывода, которая будет завершена через время t BB (А) в момент t 4 .Одновременно (параллельно) с операцией ввода-вывода процессор переключается на выполнение программы Б. В момент времени t 2 программе Б потребовалось выдать промежуточные данные на одно из внешних устройств. Происходит приостановка выполнения процессором программы Б, и начинает выполняться операция ввода-вывода, которая будет завершена через время t BB (Б) в момент времени t 7 .Далее одновременно с этой операцией ввода-вывода процессор переключается на выполнение программы В. В момент времени t 3 происходит приостановка выполнения программы В, и начинает выполняться операция ввода-вывода, которая будет завершена за время t BB (Б). После завершения операции ввода-вывода для программы А в момент t 4 свободный к этому моменту процессор вновь начинает выполнять программу А до ее завершения в момент времени t 6 . .Так как операция ввода-вывода программы В завершилась ранее (в момент t 5), то процессор переключается на продолжение программы В; закончив ее выполнение (в момент t 8), процессор переходит к выполнению программы Б, операция ввода-вывода для которой закончилась в момент t 7 . Таким образом, выполнение всех трех программ закончилось в момент t 9, причем величина t 9 –t 0 значительно меньше суммы Т (А)+Т (Б)+Т (В) в однопрограммном режиме. Однако время выполнения программ Б и В увеличилось по сравнению с однопрограммным режимом на величины t 6 –t 5 иt 8 –t 7 соответственно (на схеме эти фрагменты обозначены). Эти временные задержки возникли из-за занятости процессора обслуживанием других программ при готовности программ Б и В к продолжению выполнения. При выполнении в пакетном режиме наличие этих задержек не имеет существенного значения, так как они практически не влияют на время получения пользователем результатов счета. Основным достоинством многопрограммного пакетного режима является значительное уменьшение времени простоя процессора.

Реализация рассматриваемой идеи многопрограммной обработки потребовала изменения, как аппаратных, так и программных средств:

1) реализован механизм прерывания;

2) в состав ЭВМ включены новые устройства – каналы ввода-вывода, каждый из которых управляет обменом данными между оперативной памятью и некоторым набором внешних устройств (на схеме эти устройства обозначены). Канал осуществляет все операции ввода-вывода, не используя средств процессора (на схеме:

операции ввода-вывода с использованием средств процессора,

операции через канал ввода-вывода);

3) организация функционирования ЭВМ реализуется с помощью комплекса взаимосвязанных управляющих программ, то есть ОС, ставшей неотъемлемой частью мультипроцессорных ЭВМ.

Пакетная обработка как способ повышения эффективности использования ресурсов вычислительной системы актуальна тогда, когда стоимость единицы времени вычислительной системы достаточно высока, и следовательно цена простоев может достигать значительных величин. Дальнейшая эволюция ОС была направлена на устранение недостатка пакетного режима, то есть на минимизацию времени ожидания пользователем результатов выполнения своей программы.

4. Режим коллективного пользования.

Это такая форма обслуживания, при которой возможен одновременный доступ нескольких независимых пользователей к вычислительным ресурсам мощной вычислительной системы. Каждому пользователю предоставляется терминал, с помощью которого он устанавливает связь с системой коллективного пользования. Системы коллективного пользования с однородными запросами (обработка которых занимает примерно одно и то же время) реализуют режим «запрос-ответ» (например, справочный экран на вокзале).В этом режиме ОС работает также как в мультипрограммном. Но, в отличие от пакетного режима, очередь программ, ожидающих выполнения, формируется динамически: по каждому вопросу от терминала соответствующая программа обработки этого запроса попадает в очередь, которую покидает после выполнения. Такой режим обслуживания позволил сократить время ожидания пользователя, но если некоторый пользователь вводит запрос, требующий длительной обработки, то время ожидания других пользователей может возрасти до недопустимых величин. С целью устранения этого недостатка появился режим квантования времени: режим основан на многозадачной обработке; при этом каждой готовой к выполнению программе выделяется для исполнения на процессоре фиксированный, заранее определенный интервал времени (квант). Программа, получившая квант времени, может завершить свою работу в течение этого интервала (тогда она покидает очередь), либо по истечению выделенного кванта времени программа не выполнена до конца (тогда она прерывается и перемещается в конец очереди других готовых к выполнению программ). Такое циклическое обслуживание, основанное на детерминированной схеме прерывания, гарантирует, что всем программам будет выделяться процессорное время «справедливо», то есть никто не сможет монополизировать процессор. Дальнейшее развитие ОС получили при создании многомашинных, мультипроцессорных вычислительных систем, а также локальных и глобальных вычислительных сетей.

Основные принципы построения ОС.

Каждая ОС является уникальной и сложной программной системой. Однако в основу разработки каждой из них положены некоторые общие принципы.

1.Частотный принцип.

Этот принцип основан на выделении в алгоритмах программ действий (в обрабатываемых массивах данных) примерно равных по частоте использования. Для программ и данных, которые часто используются, обеспечиваются условия их быстрого выполнения и быстрого доступа для данных.

2. Принцип модуля.

Под модулем понимается функциональный элемент системы, который: а) оформлен по определенным правилам системы (правила – язык, способ передачи параметров и т.д.); б)имеет средство сопряжения с подобными элементами этой или другой системы. По определению предполагается легкий способ его замены на другой. При построении ОС большое значение имеют параллельно используемые или reentry (реентерабельные) модули. Каждый такой модуль может параллельно (одновременно) использоваться несколькими программами при их исполнении.

Пусть некоторая программа А в процессе своего выполнения обратилась к модулю С. Во время выполнения модуля С произошло прерывание от внешнего устройства, и началась обработка этого прерывания программой В, которая имеет приоритет больше, чем у программы А и С. В ходе выполнения программа В также обратилась к модулю С. Если модуль С не реентерабельный, то такая ситуация недопустима, так как состояния внутренних рабочих переменных в модуле С соответствует выполнению обращения от программы А на момент прерывания t 1 , поэтому при повторном вхождении в незавершенный модуль С в момент t 2 текущее состояние рабочих ячеек будет потеряно. Реентерабельность, то есть обеспечение повторной входимости в модуль, достигается различными способами, в основе которых лежит отделение кода от данных, то есть внутренних переменных. При каждом обращении к модулю ему предоставляется отдельная область памяти под внутренние переменные. Разработка реентерабельных программ требует применения специальных приемов программирования.

3. Принцип функциональной избирательности (вытекает из 1-го и 2-го).

В ОС выделяется часть наиболее важных модулей, которые наиболее часто используются и являются основой системы. Эту часть системы называют ядром ОС. Программы, входящие в состав ядра, постоянно находятся в оперативной памяти, доступны для использования в любой момент и называются ОЗУ-резедентными. Остальные системные программы постоянно хранятся на магнитных дисках, называются транзитными и загружаются в оперативную память только при необходимости их выполнения, а при недостатке оперативной памяти могут перекрывать друг друга.

4. Принцип генерируемости.

Этот принцип определяет такой способ исходного представления ОС, который позволял бы настраивать ее под конкретную конфигурацию ЭВМ и конкретный набор прикладных программ, управлением выполнения которых она должна заниматься.

5. Принцип функциональной избыточности.

Этот принцип обеспечивает возможность выполнения одной и той же функциональной операции различными средствами.

6. Принцип «по умолчанию».

Применяется он для упрощения процедуры генерации ОС и для работы с готовой (генерированной) ОС. Он основан на хранении в системе некоторых констант, определяющих параметры и характеристики системы. Значения этих констант используются системой как заданные, если пользователь, оператор или администратор забудут или сознательно не изменят эти значения. Использование этого принципа позволяет сократить число параметров, устанавливаемых пользователем в процессе работы системы.

7. Принцип перемещаемости.

Этот принцип предусматривает построение модулей ОС, исполнение которых не зависит от места расположения в оперативной памяти. Настройка программы модуля на конкретные места (адреса) оперативной памяти, заключающаяся в определении физических адресов, используемых в настойке адресных частей команд, проводится каждый раз при загрузке модуля.

8. Принцип защиты.

Этот принцип определяет необходимость создания средств, ограждающих программы и данные пользователей от искажения, которое может возникнуть из-за нежелательного влияния программ друг на друга, а также влияния пользователей на ОС. Защита программ должна гарантироваться как при их использовании, так и в режиме хранения.


Похожая информация.


На этой страничке мы поговорим на такие темы, как: Модульный принцип построения компьютера, операционной системы.

Главным требованием, предъявляемым к операционной системе , является способность выполнения основных функций: эффективного управления ресурсами и обеспечения удобного интерфейса для пользователя и прикладных программ. Современная ОС , как правило, должна реализовывать мультипрограммную обработку, виртуальную память, свопинг, поддерживать многооконный интерфейс, а также выполнять многие другие, совершенно необходимые функции.

Кроме этих функциональных требований к операционным системам предъявляются не менее важные принципы построения, обеспечивающие жизнеспособность системы : модульность , расширяемость, принцип функциональной избирательности, переносимость (мобильность), надежность и отказоустойчивость, совместимость, безопасность, производительность.

Модульный принцип построения компьютера

Под модулем в общем случае понимают функционально законченный элемент системы, который предполагает возможность без труда заменить его на другой при наличии заданных интерфейсов.

Принцип модульности заключается в следующем: построение ОС в виде модульной системы, в которой каждый модуль выполняет свои функции. При этом в составе ОС могут быть выделены следующие модули:

  • модуль, отвечающий за загрузку ОС.
  • модуль обработки прерываний.
  • модуль справочной системы.
  • конфигурационные файлы.
  • утилиты.
  • драйверы.
  • библиотеки программ и др.

Способы разделения составных частей ОС в отдельные модули могут существенно различаться, но чаще всего разделение происходит именно по функциональному признаку.

Расширяемость

Принцип расширяемости заключается в следующем: код ОС должен быть написан таким образом, чтобы можно было легко внести дополнения и изменения, если это потребуется, и не нарушить целостность системы.

Расширяемость может достигаться за счет модульной структуры ОС, при которой программы строятся из набора отдельных модулей, за счет чего в ОС могут быть добавлены новые компоненты.

Изменения ОС обычно представляют собой приобретение новых свойств:

  • поддержку новых устройств.
  • возможность связи с сетями нового типа.
  • поддержку графического интерфейса пользователя.
  • использование более чем одного процессора и др.

Принцип функциональной избирательности

Принцип функциональной избирательности заключается в следующем: разделение всех модулей системы в зависимости от их приоритетов и наиболее оптимальное формирование состава ядра ОС.

В ОС выделяется некоторая часть важных модулей (ядро), которые должны постоянно находиться в оперативной памяти для более эффективной организации вычислительного процесса. Эта часть ОС образует основу системы и при формировании ее состава требуется учитывать два противоречивых требования:

  1. В состав ядра должны войти наиболее часто используемые системные модули.
  2. Количество модулей должно быть таким, чтобы объем памяти, занимаемый ядром, был бы не слишком большим (т.к. большая часть ядра загружается в оперативную память).

Переносимость (мобильность)

Требование переносимости кода тесно связано с расширяемостью. Расширяемость позволяет улучшать операционную систему, в то время как переносимость дает возможность легко перемещать всю систему на машину, базирующуюся на другом процессоре или аппаратной платформе, делая при этом по возможности небольшие изменения в коде.

Надежность, отказоустойчивость и совместимость

Принцип заключается в следующем: система должна быть защищена как от внутренних, так и от внешних ошибок, сбоев и отказов, ее действия должны быть всегда предсказуемыми, а приложения не должны быть в состоянии наносить вред ОС.

Принцип совместимости заключается в следующем:

  • ОС должна выполнять программы, написанные для более ранних версий данной операционной системы, написанные для других ОС, а также для другой аппаратной платформы.
  • Пользовательский интерфейс должен быть совместим с существующими системами и стандартами.

Безопасность и производительность

Принцип безопасности заключается в следующем:

  • Защита ресурсов одного пользователя от других и установление квот по ресурсам для предотвращения захвата одним пользователем всех системных ресурсов (например, таких как память).
  • Защита данных от несанкционированного доступа.

Принцип производительности заключается в следующем: система должна обладать настолько хорошим быстродействием и временем реакции, насколько это позволяет аппаратная платформа.

Понравилась статья? Поделиться с друзьями: